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Cutoff Wavenumbers and Modes for
Annular-Cross-Section Waveguide
with Eccentric Inner Conductor

of Small Radius

MARAT DAVIDOVITZ, STUDENT MEMBER, IEEE, AND YUEN T. LO, FELLOW, IEEE

Abstract — Analytical expressions are derived for the cutoff wavenum-
bers and the corresponding modes in annular-cross-section waveguides
having inner conductors of small radius. Waveguides with circular and
rectangular outer boundary are considered. In the case of the circular
eccentric annular waveguide, comparison is made between the values of
cutoff wavenumbers computed from the expressions derived in this paper
and data obtained by a more rigorous numerical technique.

1. INTRODUCTION

OMPUTATION OF cutoff wavenumbers for uniform

waveguides with eccentric annular cross section has
been the subject of numerous investigations [1]-[4], [9],
[10].! The various techniques suggested for that purpose
are for the most part rigorous in nature and require
considerable numerical analysis. A relatively important
limiting case which has not received much attention, and
yet is of practical interest, is the annular waveguide with
small ratio of inner to outer conductor dimensions. Con-
figurations of this type arise, for example, in the analysis
of cavities excited by thin probes [5].

The purpose of this paper is to derive approximate
analytical expressions for the cutoff wavenumbers and the
corresponding modal wave functions for annular wave-
guides with small ratios of inner to outer conductor dimen-
sions. Derivation of the results is based to a large extent on
the perturbation technique outlined in the investigation
entitled “Distortion of Standing Wave by a Strip,” found
in reference [6].

Circular waveguide with eccentrically located inner con-
ductor of small radius is analyzed in Section II. Cutoff
wavenumbers computed therein are compared with data
numerically generated from a more rigorous formulation
[1].

Section IIT considers the case of rectangular waveguide
with arbitrarily located small inner conductor. Again, the
cutoff wavenumbers and the corresponding modal wave
functions are derived.
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Fig. 1. Cross section of an annular waveguide with circular outer

conductor.

II. CIRCULAR WAVEGUIDE WITH AN ECCENTRIC
INNER CONDUCTOR OF SMALL RADIUS

Approximate formulas for the cutoff wavenumbers and
the corresponding modes in a circular waveguide with
eccentric inner conductor of small radius are derived in
this section. A cross section of the waveguide, with the
relevant dimensions indicated, is shown in Fig. 1. Analysis
of the TM modes symmetric with respect to ¢’ is presented
in detail. The antisymmetric TM modes are not consid-
ered, since they are insignificantly perturbed by the small
inner conductors for which the theory presented here is
valid. The results for the TE case can be obtained in an
analogous manner.

The TM modes in a uniform waveguide can be derived
from a scalar potential function ¢,,, satisfying the wave

equation
(V2 + K3 ) ¥y =0 (1)

and subject to the homogeneous Dirichlet boundary condi-
tion [7]. In the absence of the inner conductor in a circular
waveguide of radius ¢, the solution of (1) is known to be

Iil/um = Jﬂl(kﬂmp,)cos(m¢/)’ Jm(kvmc) = O (2)

where J,, denotes a Bessel function of the first kind of
order m. It is intuitively clear that the presence of a small
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inner conductor slightly perturbs the above solution. Deri-
vation of the modified solution, denoted by V¥, is facili-
tated by the introduction of several hypotheses, detailed
discussion of which can be found in [6]. A brief restate-
ment thereof follows.

Initially, it is assumed that the standing wave ¢,
which is expressible as a combination of diverging and
converging cylindrical waves, is incident upon the inner
conductor and is scattered by it. The effect of the scatterer
on the incident waves is computed as though these waves
were out in the unbounded medium, ie., with the outer
wall boundary C, at infinity. It is hypothesized that the
value of ¥, at the inner conductor boundary C; should
not be very sensitive to the presence or absence of the
outer wall, so long as the inner conductor is small and is
not situated close to C,. Consequently, the behavior of
¥ on C, is known fairly accurately from the analysis
performed with C, at infinity. The behavior of the mod-
ified wavefunction ¥, in the rest of the waveguide cross
section can be found with the aid of the following equa-

¥,.(p, )= 2 E(m,p, e)[J(kpmp)
p=0
a‘I,VVH _ a\I,vm(p7¢) —_
n |c, o |,
tion:
av,,
‘I’Vm(P,’,,¢Z,)=‘45W(P§,¢§)G(P&¢ZIP§,¢§WC 3)

<

derived using Green’s theorem. The subscripts o and s in
the above equation refer to the observation and source
coordinates, respectively. G(p’, ¢,|p., ¢,) denotes the scalar
Green function satisfying the homogeneous Dirichlet
boundary condition on C,. Application of standard ana-
lytical techniques yields the following expression for
G(p. 9100 9):

G (o5, $5l05 90) = Z Z AL ATACN)

N2 (k* -k,

n=0¢=1
-cosn (¢, — ¢.) (4a)
where
) 1,2
7c
Nén = {—:—Jn2+1(k§nc)} (4b)

¢ = {1 n=0
n 2 n#0.

In accordance with the procedure outlined in the preced-
ing paragraphs, let it be assumed that the combination of
cylindrical waves given by ¢, is incident upon the inner
conductor. The conductor is centered at the origin of the
coordinate system (p,¢), shown in Fig. 1. The addition
theorem for Bessel functions [8] is used to transform ¢,,,
(eq. (2)) from the (p’, ¢’) into the (p, ¢) coordinate system.

o
_ Z E(’"»P»e)
Ta
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The resulting expression is given by

[ee]

Yy 9) = X2

p=0

E(m, p,e)J,(k,,p)cos(pe) (52)
where

E(m, p.e) =2 [0y (Kppe) + (= 1),y (K]

(5b)
The scattered field can be expressed as a sum of outgoing
cylindrical waves?:

Z A, HP(k,,p)cos(po) (6)

p=
where H® is the Hankel function of the second kind of
order p. The unknown coefficients 4, are found by en-
forcing the boundary condition requiring ¥, =4, + ¢*
to vanish on C (p = g). The incident-plus- scattered wave
solution and its normal derivative evaluated on C, are
given by

J,(k,pa)

H(2)(k -'ngz)(kvmp) 'COS(p¢)

(7)

[ee]

j ~cos(po) (®)

1
p=0 H(z)(kvm

where the Wronskian of Bessel’s equation was used in
deriving (8). In the limit, as the radius a goes to zero, (8)
can be approximated by the following expression:

v,,| 2 E(m,0 e) 2 J,(k,.e) (%)
—_ a
dn C; 77(1 f(kuma) Wa f(kvma)
where f(k,,a) is the small argument expansion of jH{?,

given by [8]

(ko) = g 22

a
2 )+ Y
and y = 0.5772 is Euler’s constant. '

At this point, (4) and (9) can be substituted into (3) and
the prescribed integration performed. The most expedient
way to perform the integration is by transforming all the
functions involving the variables of integration into the
(p, ¢) coordinate system. In the case of the Green function
G(p,, 9,|p., d.), the required transformation is facilitated
by the use of the addition theorem for Bessel functions.
The transformation is applied to source coordinate (p;, ¢])
and yields the following expression:

G (05 9105, 90,
= G(p/a ¢,lp7 ¢)lp a

(9b)

(kgnp/)
n¥0 521 ]\'fgn(k2 - k?n)

. i E(n.q,e)J,(kg,a)[cos(ng’)cos(qo)

g=0

+sin(n¢’)sin(g¢)] (10)

2A e’“' time dependence is assumed throughout the paper.



512

where the subscript o is unambiguously omitted from
p’, ¢’. Equation (3) can now be rewritten as

lo, ¢)} oo (ado)
(11)

2a a\I’um
\Itvm(p,’q)/)z—j(; {- ap

straightforward evaluation of which yields

N 4Jm(kvme) S Jn(kgne)']n(kénpl)
S ) BB R ()
“Jo(kyna)cos(ng’). (12)

As it stands, (12) is not a solution of the eigenvalue
problem for the annular domain bound by C,, and C; until
the parameter k is replaced by the correct eigenvalue.
Henceforth, this eigenvalue or the cutoff wavenumber for
the annular domain will be denoted by K,,. Noting the
fact that v,, and ¥, satisfy the wave equation, with
wavenumbers k,, and K, respectively, and using Green’s
theorem, it can be shown that K, satisfies the following

formula [6]:
¢ Ipym vm

K2 =k2, — C’/ v 4 (13)
rym-vm S

where S, is the annular region bounded by C, and C,.
Using the hypothesis that ¥, ,, does not significantly differ
from ,,, over most of S, the integral in the denominator
of (13) can be approximated in the following manner:

J[ 0¥, ds = ffqﬂ ds=N2,
Sy

where S is the circular area bounded by C,, and N,,, is
given by (4b). Substitution of (5a) and (9) into (13) yields
the following result:

(14)

4‘]m2(kvme)JO(kvma)
Ny f(kyma)

Note that the first term in the above expression for K2, is

just the square of the original cutoff wavenumber, whereas

the second term constitutes a small perturbation thereof.
To complete the derivation of ¥, ., a substitution of

K,,, for k in (12) is made, and the result simplified using
the fact that

K2, ~k2,~

(15)

kZ,— k2, én+#vm
sz‘kiznz _ 4Jn%(KVme)JO(kvma) n=rm
szmf(kvma) .
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Fig. 2. Cutoff wavenumbers for the TM modes in a waveguide with a
PEC circular outer conductor and an eccentrically located PEC inner
conductor, « /c= 0.01. (Markers are placed at points computed using
the rigorous technique found in [1].)

The final expression for ¥,, can be written as follows:
f(k,,a)
2 o (k) J, (k)
én n nP
X X :

N (K2, - k2,)

\I,um(pla qb’) = Hbvm(p” qb’) -

n=0¢=1
tn#+vm

Jo(ke,a) cos(ng) (17)

where in addition to the original wave function ¢, there
is a small term representing the perturbation by the inner
conductor.

To verify the accuracy of the presented solution, a
comparison is made between the results computed from
(15) and those obtained by the more rigorous technique of
reference [1]. The eight lowest cutoff wavenumbers are
plotted in Figs. 2 and 3 as functions of the eccentricity e /¢
for a /c ratios of .01 and .03, respectively. The solid curves
represent the data computed from (15), and the markers
are placed at points computed by the alternate method [1].
The agreement between the separately computed sets of
data appears to be very good for the cases considered.

ITI. RECTANGULAR WAVEGUIDE WITH A
CYLINDRICAL INNER CONDUCTOR OF SMALL RADIUS

Analysis of the circular waveguide with an eccentrically
located inner conductor of small radius was presented in
the preceding section. It should be noted, however, that the
general technique used in Section II to derive the cutoff
wavenumbers and the corresponding modes is applicable
to other waveguide cross-section geometries. In this sec-
tion, it will be used to solve for the TM modes in a
rectangular waveguide with inner conductor of small radius.
Fig. 4 illustrates the geometry, along with the relevant
coordinate systems and dimensions. To avoid repetition
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Fig. 3. Cutoff wavenumbers for the TM modes in a waveguide with a
PEC circular outer conductor and an eccentrically located PEC inner
conductor, a /¢ =0.03. (Markers are placed at points computed using
the rigorous technique found in {1].)

and keep the presentation as brief as possible, all the
assumptions and hypotheses stated in the preceding sec-
tion will be omitted here. Only the most essential steps in
the derivation will be shown, since it is completely analo-
gous to the one found in Section II.

In the absence of the inner conductor, the mnth TM
mode in the rectangular waveguide can be determined
from the scalar potential function:

‘Pmn = Sin(kxmx/)Sin(kyny,)

X mar X na
W) oum (T )

The wave function ¢, is expressible as a combination of
four plane waves. It is assumed that these waves are
incident upon the inner conductor. The scattering problem
of plane wave by a circular cylinder is well documented [6]
and its solution need not be reconsidered here. The total
incident-plus-scattered wave ¥, , = ¢, + {’, satisfying the
homogeneous Dirichlet boundary condition on Cy; is found
by superposition of the solutions for the four plane waves
constituting ¥,,,. As in Section II, the quantity of interest
is the value of 8V, /dn|. Straightforward analysis shows
that for small values of &, ,a,

2 Sin(kxmxc)Sin(kynyc)
f(k,ma)

where k,,, =\k2,. + kyz,, and a, x,, and y, are as shown
in Fig. 4. ‘

The form of the modified wave function ¥, , at arbi-
trary points within the guide cross section is found with
the aid of (3). For the case of the rectangular waveguide
being considered here, the Green function appearing in (3)

(18)

where

av,.,
an

=

c, ma

(19)
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Fig. 4. Cross section of an’ annular waveguide with rectangular outer
conductor.

is given by
G(x5, yilx}s y)
© @ sin(k,,x;)sin(k,,y,)sin(k,,X/)sin(k,, /)

=ZZ xp”ro xp“ts

Nz(kz - kJ%q)

p=1qg=1
(20a)
where .
Vbe

The integration prescribed in (3) is facilitated by several
transformations of (20). The source coordinates transfor-
mation x/=x_+pcose, y/ =y + psing is implemented
first. This allows the term sin(k,,x;)sin(k,,y;) in (20a)
to be rewritten as follows:

sin (k,x;)sin (k,p5/)
= [Sin(kxpxc) cos (k,,p cos )
+cos(k,,x,)sin(k,,p COS‘i’)]
. [sin(kyqyc) cos (k,,psing)

+cos(k,,y,)sin(k,.0 sinq))]. (21)

Equation (21) is further expanded in a series of terms
involving Bessel functions J,(k,,p), J,(k,,p) and angular
harmonics cos(ré),sin(»¢) [8]. The first and only term of
the expansion required for subsequent calculations is given

by
sin(kxpx;) sin(kyqys’)
~ sin(k,,x,)sin(k,,.) Jo (k) Jo(kyqp). (22)

Substitution of (19) and (20a) into (3) and subsequent
use of (22) yield the formal expression for the modified
wave function ¥, :

, —4sin(k,,,X,)sin(k,,.)
() S )

5 sin(kxpx’)sin(kyqy’)sin(kxpxc)
p=1gq=1 Nz(kz_k;q)

'Sin(kyqyc)'JO(k:'cpa)JO(kyqa)'

[o T v o]

(23)
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Fig. 5. (a) Cutoff wavenumbers for the TM modes 1n a waveguide with a PEC rectangular outer conductor and an

eccentrically located PEC inner conductor, b/c= 0.5, a /¢ = 0.03, y, /¢ = 0.1. (b) Cutoff wavenumbers for the TM modes in
a waveguide with a PEC rectangular outer conductor and an eccentrically located PEC inner conductor, b/c=0.5,

a/c=003, y./c=02.

As previously noted in Section II, (23) is not correct
until and unless & is replaced by the modified wavenum-
ber K,,,. Equation (13) is used to calculate X,,,, which

after some analysis can be shown to satisfy the following
formula:

K2, =kL,—
N Ty
.JO(kxma)JO(kyna)' (24)

The final form of the modified wave function ¥,,, is
obtained when (24) is substituted into (23) and the re-
sulting expression simplified in the manner previously
described in (16):

to inner conductor cross sections other than circular. The
perturbation procedure is restricted to cases where the
ratio_of the inner to the outer conductor dimension is
much smaller than 1. This restriction can be relaxed some-
what, for the lowest cutoff wavenumbers, if the inner
conductor is kept well away from the outer walls, i.e., close
to the center.

In the case of the circular waveguide, the results derived
herein were compared with those obtained by a more
rigorous procedure. There was excellent agreement be-
tween the two sets of data for all values of eccentricity
(e/c) so long as ratio of inner to outer conductor dimen-
sions was less than 0.05. As this value is increased, the
agreement deteriorates, although for small values of e/c

4sin(k,,x_)sin (kyn)’c)

‘I,mn(x/’ y/) = Hbmn(x/a yl)—

fk,,a)
© sin(k,,x")sin(k,,y’)sin(k,,x )sin(k,,y.)

o0
r=1lg=1
pg ¥+ mn

Fig. 5(a) and (b) illustrates the variation of K, , with x,
for a rectangular waveguide with ratio b/¢=0.5. The
results are plotted over the domain 0.5 < x,/c<0.97, y_ /c
=0.1,0.2.

1V. CoONCLUSIONS

A perturbation technique was applied to derive analyti-
cal expressions for the cutoff wavenumber and the corre-
sponding modes in circular and rectangular waveguides
with inner conductors of small radius. The technique is
applicable to other separable-cross-section waveguides and

Nz(kim - k;q)

'JO(kxpa)'JO(kyqa)' (25)

and the lowest cutoff wavenumbers, it still remains quite
good.
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