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Cutoff Wavenumbers and Modes for
Annular-Cross-Section Waveguide

with Eccentric Inner Conductor
of Small Radius

MARAT DAVIDOVITZ, STUDENT MEMBER, IEEE, AND YUEN T. LO, FELLOW, IEEE

AMruct —Analytical expressichrs are derived for the cutoff wavenum-

bers and the corresponding modes in annnlar-cross-section waveguides

having inner conductors of small radius. Waveguides with circular and

rectangular outer boundary are considered. In tbe case of the circular

eccentric annular wavegnide, comparison is made between the values of

cutoff wavenumbers computed from the expressions derived in this paper

and data obtained by a more rigorous nnmericaf technique.

I. INTRODUCTION

c AMPUTATION OF cutoff wavenumbers for uniform

waveguides with eccentric annular cross section has

been the subject of numerous investigations [1]-[4], [9],

[lO].l The various techniques suggested for that purpose

are for the most part rigorous in nature and require

considerable numerical analysis. A relatively important

limiting case which has not received much attention, and

yet is of practical interest, is the annular waveguide with

small ratio of inner to outer conductor dimensions. Con-

figurations of this type arise, for example, in the analysis

of cavities excited by thin probes [5].

The purpose of this paper is to derive approximate

analytical expressions for the cutoff wavenumbers and the

corresponding modal wave functions for annular wave-

guides with small ratios of inner to outer conductor dimen-

sions. Derivation of the results is based to a large extent on

the perturbation technique outlined in the investigation

entitled “Distortion of Standing Wave by a Strip,” found

in reference [6].

Circular waveguide with eccentrically located inner con-

ductor of small radius is analyzed in Section II. Cutoff

wavenumbers computed therein are compared with data

numerically generated from a more rigorous formulation

[1].

Section III considers the case of rectangular waveguide

with arbitrarily located small inner conductor. Again, the

cutoff wavenumbers and the corresponding modal wave

functions are derived.
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Fig. 1. Cross section of an annular waveguide with circular outer

conductor.

II. CIRCULAR WAVEGUIDE WITH AN ECCENTRIC

INNER CONDUCTOR OF SMALL RADIUS

Approximate formulas for the cutoff wavenumbers and

the corresponding modes in a circular waveguide with

eccentric inner conductor of small radius are derived in

this section. A cross section of the waveguide, with the

relevant dimensions indicated, is shown in Fig. 1. Analysis

of the TM modes symmetric with respect to +’ is presented

in detail. The antisymmetric TM modes are not consid-

ered, since they are insignificantly perturbed by the small

inner conductors for which the theory presented here is

valid. The results for the TE case can be obtained in an

analogous manner.

The TM modes in a uniform waveguide can be derived

from a scalar potential function +Vm satisfying the wave

equation

(v: + Jk:m)+vm = o (1)

and subject to the homogeneous Dirichlet boundary condi-

tion [7]. In the absence of the inner conductor in a circular

waveguide of radius c, the solution of (1) is known to be

+..1 = ~wl(~vmf’)cos(mo’), .lm(kpmc) = o (2)

where JH, denotes a Bessel function of the first kind of

order m. It is intuitively clear that the presence of a small
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inner conductor slightly perturbs the above solution. Deri-

vation of the modified solution, denoted by ~v~, is facili-

tated by the introduction of several hypotheses, detailed

discussion of which can be found in [6]. A brief restate-

ment thereof follows.

Initially, it is assumed that the standing wave ~U~,

which is expressible as a combination of diverging and

converging cylindrical waves, is incident upon the inner

conductor and is scattered by it. The effect of the scatterer

on the incident waves is computed as though these waves

were out in the unbounded medium, i.e., with the outer

wall boundary Co at infinity. It is hypothesized that the

value of *v~ at the inner conductor boundary CI should

not be very sensitive to the presence or absence of the

outer wall, so long as the inner conductor is small and is

not situated close to Co. Consequently, the behavior of

VV~ on CT is known fairly accurately from the analysis

performed with Co at infinity. The behavior of the mod-

ified wavefunction 17V~ in the rest of the waveguide cross

section can be found with the aid of the following equa-

The resulting expression is given by

t.m(P, @) = S E(~, Pje)JP(~~vm~)cos( P@) (5a)
~=o

where

E(nz, p,e)=~[.l~_P(kV~e) +(--l) P,l~+P(kV~e)].

(5b)

The scattered field can be expressed as a sum of outgoing

cylindrical w-aves2:

+s=EApHp(kpmP)a3s(P@) (6)
*=()

where H~J is the Hankel function of the second kind of

order p. The unknown coefficients AP are found by en-

forcing the boundary condition requiring *,m = I)U~ + +s

to vanish on CI( p = a). The incident-plus-scattered wave

solution and its ‘normal derivative evaluated on CI are

given by

r

m I

[

Jp(/t.ma) . .H~)(k.w,p
~vm(p,+) = x E(m, P,e) JP(k.#)- H(*)(kVMa) 1).cos(p@)

~=o P

tion:

derived using Green’s theorem. The subscripts o and s in

the above equation refer to the observation and source

coordinates, respectively. G( p:, rp:Ip;, +( ) denotes the scalar

Green function satisfying the homogeneous Dirichlet

boundary condition on Co. Application of standard ana-

lytical techniques yields the following expression for

G(PL4%IP:, M):

where

‘t. =

Cn =

In accordance with

ing paragraphs, let it

(4a)

(4b)

(1 n=()

2 n#O.

the procedure outlined in the preced-

be assumed that the combination of

cylindrical waves given by I)Um is incident upon the inner

conductor. The conductor is centered at the origin of the

coordinate system (p, $), shown in Fig. 1. The addition

theorem for Bessel functions [8] is used to transform @un

(eq. (2)) from the (p’, o’) into the (P,+) coordinate system.

(7)

(8)

where the Wronskian of Bessel’s equation was used in

deriving (8). In the limit, as the radius a goes to zero, (8)
can be approximated by the following expression:

d Vum 2 E(rn, O,e) 2 Jm(k”me)— ~— —

an ~, ~a ~(k.ma) – ma ~(k.~a)

where .f( k.., a ) is the small argument expansion of

given by 18j””

[ (W+’l
f(ku~a) = ~ log

and y = 0.5772 is Euler’s constant.

(9a)

jH~*),

(9b)

At this point, (4) and (9) can be substituted into (3) and

the prescribed integration performed. The most expedient

way to perform the integration is by transforming all the

functions involving the variables of integration into the

(P, +) coordinate system. In the case of the Green function

G( P;, OLIp:, o;), the required transformation is facilitated
by the use of the addition theorem for Bessel functions.

The transformation is applied to source coordinate (pi, +;)

and yields the following expression:

G(P:?4JP:>o:)Ic,
Jr?(k&zP’)

=G(p’, #lP, +)lP=. = ~ ~ 2 2 k2

.~ot~, ~gn(k - g,,)

~ ~ E(n, q,e)J,(kg.a)[cos( n$’)cos(q+)
~=()

+sin(n@’)sin(q@)] (lo)
2A e~’”f time dependence is assumed throughout the paper.
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where the subscript o is unambiguously omitted from

p’, o’. Equation (3) can now be rewritten as

J{Yvti,(p’,+’) = – 2“ )–~oG(P’, #lP, @) IP=..(U4)
o

(11)

straightforward evaluation of which yields

..10(k6.a) cos(n$’). (12)

As it stands, (12) is not a solution of the eigenvalue

problem for the annular domain bound by Co and CI until

the parameter k is replaced by the correct eigenvalue.

Henceforth, this eigenvalue or the cutoff wavenumber for

the annular domain will be denoted by KV~. Noting the

fact that +Un and ~.~ satisfy the wave equation, with

wavenumbers kV~ and KV~, respectively, and using Green’s

theorem, it can be shown that Ky~ satisfies the following

formula [6]:

4
a*,m

+ — dc
‘W vn

KV2~= k:w, – c’

//

(13)
+Vm+vmds

s.

where S~ is the annular region bounded by Co and CI.

Using the hypothesis that Wumdoes not significantly differ

from +v~ over most of S~, the integral in the denominator
of (13) can be approximated in the following manner:

(14)

where Sc is the circular area bounded by Co, and NVM is

given by (4b). Substitution of (5a) and (9) into (13) yields

the following result:

Note that the first term in the above expression for K~~ is

just the square of the original cutoff wavenumber, whereas

the second term constitutes a small perturbation thereof.

To complete the derivation of W,n, a substitution of

KV,,, for k in (12) is made, and the result simplified using

the fact that

(16)

p14_

$
>3=

b+
b+~.

z’ TMIOE O’TM20 A ‘W4

~1. “TMII X’TW3 0= TM22

*’W2 ❑’TM21

o 2 ‘4 6 8 10
e/c

Fig. 2. Cutoff wavenumbers for the TM modes in a waveguide with a
PEC cmcular outer conductor and an eccentrically located PEC inner
conductor, a/c = 0.01. (Markers are placed at points computed using

the rigorous technique found in [1].)

The final expression for Vum can be written as follows:

vvm(p’, +’) =+.m(p’, r$’)– 4;:k”:;)

urn

.Jo(kg.a)cos(n+’) (17)

where in addition to the original wave function ~V~ there

is a small term representing the perturbation by the inner

conductor.

To verify the accuracy of the presented solution, a

comparison is made between the results computed from

(15) and those obtained by the more rigorous technique of

reference [1]. The eight lowest cutoff wavenumbers are

plotted in Figs. 2 and 3 as functions of the eccentricity e/c

for a/c ratios of .01 and .03, respectively. The solid curves

represent the data computed from (15), and the markers

are placed at points computed by the alternate method [1].

The agreement between the separately computed sets of

data appears to be very good for the cases considered.

III. RECTANGULAR WAVEGUIDE WITH A

CYLINDRICAL lNNER CONDUCTOR OF SMALL RADIUS

Analysis of the circular waveguide with an eccentrically

located inner conductor of small radius was presented in

the preceding section. It should be noted, however, that the

general technique used in Section II to derive the cutoff

wavenumbers and the corresponding modes is applicable

to other waveguide cross-section geometries. In this sec-

tion, it will be used to solve for the TM modes in a

rectangular waveguide with inner conductor of small radius.

Fig. 4 illustrates the geometry, along with the relevant

coordinate systems and dimensions. To avoid repetition
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Fig. 3. Cutoff wavenumbers for the TM modes in a waveguide with a

PEC circular outer conductor and an eccentrically located PE~ inner
conductor, a/c = 0.03. (Markers are placed at points computed using

the rigorous technique found in [1].)

and keep the presentation as brief as possible, all the

assumptions and hypotheses stated in the preceding sec-

tion will be omitted here. Only the most essential steps in

the derivation will be shown, since it is completely analo-

gous to the one found in Section II.

In the absence of the inner conductor, the mnth TM

mode in the rectangular waveguide can be determined

from the scalar potential function:

*mfi = sin(kX~x’) sin(k,.y’) (18)

where

‘..=(% ‘?.=(%)

The wave function +~. is expressible as a combination of

four plane waves. It is assumed that these waves are

incident upon the inner conductor. The scattering problem

of plane wave by a circular cylinder is well documented [6]

and its solution need not be reconsidered here. The total

incident-plus-scattered wave Vm. = ~~. + rj’, satisfying the

homogeneous Dirichlet boundary condition on CIj is found

by superposition of the solutions for the four plane waves

constituting ~~.. As in Section II, the quantity of interest

is the value of 8 Ym. /d n Ic,. Straightforward analysis shows

that for small values of km. a,

where km. F k~m + k~n and a, XC, and y, are as shown

in Fig. 4.

The form of the modified wave function *m, at arbi-

trary points within the guide cross section is found with

the aid of (3). For the case of the rectangular waveguide

being considered here, the Green function appearing in (3)

I

“’b-r

y, ~c–

Fig. 4. Cross section of an’ annular waveguidle with rectangular outer

conductor.

is given by

~ sin(kXPxj) sin(k,,y~) sin( ~xPXi’) sin(’Y~Yi)

‘EL
~=lq=l -;,)

(20a)
where

G
N=—

2“
(20b)

The integration prescribed in (3) is facilitated by several

transformations of (20). The source coordinates transfor-

mation X; = XC+ p cos r), y,’ = yC+ p sin@ is implemented

first. This allows the term sin(kxPx;) sin(kY~y~) in (20a)

to be rewritten as follows:

sin(kXPx:) sin(k,,yo

= [sin(kxpxc)cos( k.ppcos@)

+cos(kXPxC) sin(k~.,~cos~)]

. [Sin(ky,y.)cos(kyqosin+)

+ cos(kY~yC) sin(kY~p sin~)]. (21)

Equation (21) is further expanded in a series of terms

involving Bessel functions J,( kXPp), Jv(kyqp) and angular

harmonics cos(rn)), sin(@) [8]. The first and only term of

the expansion required for subsequent calculations is given

by

sin(kXPx~) sin(k,,y{)

= sin(kX.xC)sin(kY,yC) .lO(kXPp)JO(kY,p). (22)

Substitution of (19) and (20a) intcl (3) and subsequent

use of (22) yield the ftirmal expression for the modified

wave function *W.:

–4sin(kX~XC)sin (k,~y~)
+mn(x’, y’) =

f(kwfia) ‘—

~ sin(kXPx’) sin(kY~y’) sin(k,P~.)

“Fz
~=lq=l NZI ‘Z–’z

P9

.sin(kYqyc).JO( kxpa)~)[kYqa). (23). .
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Fig. 5. (a) Cutoff wavenumbers for the TM modes m a waveguide with a PEC rectangular outer conductor and an

eccentrically located PEC inner conductor, b/c = 0.5, a/c = 0.03, y, /c = 0.1. (b) Cutoff wavermmbers for the TM modes in
a waveguide with a PEC rectangular outer conductor and an eccentrically located PEC inner conductor, b/c = 0.5,
a/c = 0.03, yC/c = 0.2.

As previously noted in Section II, (23) is not correct

until and unless k is replaced by the modified wavenum-

ber Km.. Equation (13) is used to calculate Km., which

after some analysis can be shown to satisfy the following

formula:

) “ 2(f%YJ4sin2 (kX~xC sm
K:n z k:n –

N’f(kmna)

Jo(LdJo(k.,nd (24)

The final form of the modified wave function ~~~ is

obtained when (24) is substituted into (23) and the re-

sulting expression simplified in the manner previously

described in (16):

to inner conductor cross sections other than circular. The

perturbation procedure is restricted to cases where the

ratio. of the inner to the outer conductor dimension is

much smaller than 1. This restriction can be relaxed some-

what, for the lowest cutoff wavenumbers, if the inner

conductor is kept well away from the outer walls, i.e., close

to the center.

In the case of the circular waveguide, the results derived

herein were compared with those obtained by a more

rigorous procedure. There was excellent agreement be-

tween the two sets of data for all values of eccentricity

(e/c) so long as ratio of inner to outer conductor dimen-

sions was less than 0.05. As this value k increased, the

agreement deteriorates, although for small values of e/c

4sin(k..mx.) sin (k,.Y.)
**,, (x’, y’)= +wtn(x’, y’)–

f(k~na)

“iv sin(kXPx’)sin(k,~y ’)sin(kXPxC)sin( kY,yC) -y ~kXPaj ~o(k}, ~

N’(k;n – k;~)
o ,a (25)

p=lq=l

pq # mn

Fig. 5(a) and (b) illustrates the variation of K~. with XC and the lowest cutoff wavenumbers, it still remains quite

for a rectangular waveguide with ratio b/c= 0.5. The good.

results are plotted over the domain 0.5< x,/c< 0.97, yC/c

= 0.1,0.2.

IV. CONCLUSIONS
[1]

A perturbation technique was applied to derive analyti- [~]
cal expressions for the cutoff wavenumber and the corre-

sponding modes in circular and rectangular waveguides

with inner conductors of small radius. The technique is
[3]

applicable to other separable-cross-section waveguides and
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